Resistance to EGFR TKIs: Irreversible Inhibitors

Luis Paz-Ares
Hospital Universitario
Virgen del Rocio
Sevilla

EURTAC: Erlotinib significantly improves PFS as first-line treatment for EGFR mutant NSCLC

- Erlotinib provided significant benefit over chemotherapy
 - 63% reduction in risk of progression or death; HR=0.37
 - Median OS for erlotinib vs chemotherapy: 22.9 months vs 18.8 months; P=0.8702
 - OS data are immature and confounded by second-line treatment

Erlotinib (n=86)
Chemotherapy (n=87)
Median PFS
Erlotinib: 9.7 months
Chemotherapy: 5.2 months
HR=0.37 (0.25–0.54); log-rank P<0.0001

ORR= overall response rate; OS= overall survival
Rosell R et al. ASCO 2011; Abstr. 7503
Acquired resistance mechanisms to EGFR-TKIs

- Secondary EGFR mutations: T790M.
- MET amplification.
- HGF high levels.
- Downstream effectors: PTEN loss, PI3K mut.
- Small cell lung cancer (SCLC) transformation.
- Epithelial to Mesenchimal Transition (EMT).
- DRG: BRCA1 mRNA levels.
- FAS and NFKB signalling.
- VEGF/VEGFR.
- IGFR1, IGFBP.
Neratinib (HKI272)

- NSCLC patients with ≥12 weeks of prior TKI therapy were placed in:
 - Arm A, if EGFR mutation positive (91p)
 - Arm B, if EGFR wild-type (48p)
- All patients received daily oral neratinib, initially at 320 mg but subsequently reduced to 240 mg because of excessive diarrhea (50% Grade 3)
- Low activity (PR 3%) in EGFR mut patients with prior benefit from TKIs.
- No responses in EGFRwt and T790M.
- Striking activity in exon 18 G719X +:
 - 3/4 patients with PR.
 - Median PFS 52.7 weeks

Sequist L, J Clin Oncol 2010

Study BR.26: Phase 3 Study in Advanced NSCLC After Failure of Prior Chemotherapy and Prior EGFR-targeted Therapy

Trial design
- Randomized, Phase 3, double-blind, placebo-controlled
- Interim (OS)

Endpoints
- Primary: OS
- HR: 1.33
- Secondary: PFS, OR, and PROs

Study sites
- Global (Canada, Latin America, Australia, Asia, Italy)

Key entry criteria
- Prior chemo (1/2) and EGFR
- PS 0–3
- All histologies
- Available tissue (KRAS)

Randomize
- Dacomitinib (PF-00299804) 45 mg QD + BSC
- Placebo + BSC

N=720

Interim analysis (N=360 patients, 200 events)
Study 1028: Dacomitinib vs. Erlotinib
Phase 2, Second/Third-Line Post-Chemotherapy

Trial design
Open-label, Phase 2, randomized

Endpoints
Primary: PFS
Secondary: OS, best overall response (RECIST), safety, PRO

Study sites
Global
47 sites
12 countries

Accrual
Nov 08–Oct 09

188 patients
117 KRAS WT
Advanced NSCLC
1/2 prior chemotherapies
ECOG PS 0–2
Tissue available

Stratification:
• Non-smokers vs. smokers
• Adenocarcinoma vs. nonadenocarcinoma
• East Asian vs. non-East Asian

Dacomitinib
45 mg QD

Erlotinib
150 mg QD

1:1

PRO = patient-reported outcomes; ECOG PS = Eastern Cooperative Oncology Group performance status;
RECIST = Response Evaluation Criteria in Solid Tumours

Boyер M, et al. Presented at WCLC 2011; Abstract 745

Study 1028: Dacomitinib vs. Erlotinib
Progression Free Survival – All and KRAS WT

All patients

• Median PFS was 12.4 vs 8.3 weeks
• *HR=0.66 with 2-sided P=0.012

KRAS WT

• Median was 16.1 vs 8.3 weeks
• *HR=0.50 with 2-sided P=0.002

*Based on the stratified log-rank test with EGFR, KRAS and baseline ECOG PS as the stratification factors

ORR² favored dacomitinib vs. erlotinib: 17.0% vs 6.4%, two-sided P=0.04
Clinical benefit (CR + PR + SD ≥ 24 weeks) dacomitinib vs. erlotinib: 29.8% vs 14.9%, two-sided P=0.02

ORR = objective response rate; CR = complete response; PR = partial response; SD = stable disease

Study 1028: Dacomitinib vs. Erlotinib
Treatment-Related Adverse Events in ≥10% of Patients

<table>
<thead>
<tr>
<th>Adverse event, (%)</th>
<th>Dacomitinib 45 mg QD (n=93)</th>
<th>Erlotinib 150 mg QD (n=94)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 3*</td>
<td>Total</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>12</td>
<td>73</td>
</tr>
<tr>
<td>Dermatitis acneform</td>
<td>11</td>
<td>65</td>
</tr>
<tr>
<td>Stomatitis</td>
<td>1</td>
<td>29</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>Paronychia</td>
<td>3</td>
<td>26</td>
</tr>
<tr>
<td>Mucosal inflammation</td>
<td>2</td>
<td>25</td>
</tr>
<tr>
<td>Dry skin</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Exfoliative rash</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Nausea</td>
<td>2</td>
<td>17</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Pruritus</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>Acne</td>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>Weight decreased</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Erythema multiforme</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>Hand-foot syndrome</td>
<td>0</td>
<td>11</td>
</tr>
</tbody>
</table>

*Four grade 4 AEs considered to be related to dacomitinib were reported (increased alanine aminotransferase, n=1; increased aspartate aminotransferase, n=1; anemia, n=1; increased blood creatinine, n=1). One grade 4 adverse event (pneumonia) considered to be related to erlotinib was reported. Four grade 5 events occurred during the study: due to pneumonia and pneumonitis (one patient each) on dacomitinib, and pneumonia and pulmonary embolism (one patient each) on erlotinib.

9 patients discontinued due to TRAEs: 7 receiving dacomitinib and 2 receiving erlotinib.

Boyer M, et al. Presented at WCLC 2011; Abstract 745

A Phase 3 Study Of Dacomitinib vs. Erlotinib for the Treatment of Advanced Non-Small Cell Lung Cancer

Trial design: Double blind, randomized, Phase 3, global
Endpoints: Primary: PFS
Secondary: OS*, best overall response (RECIST), safety, PROs
Co-primary patient populations:
- In patients who have previously had at least one (and no more than two) chemotherapy regimen for advanced disease within the two co-primary populations:
 - All patients with advanced NSCLC
 - Patients with NSCLC that is confirmed KRAS WT

*The study is appropriately powered to show difference in OS.
Study 1017: Clinical Activity of Dacomitinib in 1st-Line Advanced NSCLC with an EGFR-Activating Mutation

![Graph showing clinical activity of Dacomitinib](image)

- Exon 19 deletion
- L858R
- Exon 18 and/or 20

n=33/34 evaluable

- All patients with typical EGFR mutations had some degree of tumor shrinkage
- PFS data still maturing; expect 1Q2012 (current 95% CI: 11-19 months)

Mok T, et al. Presented at ESMO 2010; Abstract LBA18

Dacomitinib (PF-00299804) + Crizotinib (PF-2341066) in EGFR mu Combined MET and EGFR Inhibition

![Graph showing combined MET and EGFR inhibition](image)

Combined MET and EGFR inhibition blocks PI3K/AKT and ERK signaling, and restores sensitivity in vitro and in vivo in dacomitinib-resistant tumors

Phase 1b Study A8081006: Crizotinib + Dacomitinib (PF-00299804) in NSCLC with Resistance to Erlotinib or Gefitinib

NCT01121575

Advanced NSCLC
Escalation cohort
Crizotinib: escalating dose starting at 200 mg BID until MTD + Dacomitinib: escalating dose starting at 30 mg QD until MTD

Expansion cohort 1
Crizotinib BID + Dacomitinib QD at MTD until PD

Expansion cohort 2
Dacomitinib 45 mg QD
Crizotinib BID + Dacomitinib QD at MTD until PD

Advanced NSCLC with acquired resistance* to TKIs

No biopsy
Mandatory entrance tumor biopsy

*Acquired resistance is defined as progression following either an initial response or SD (for at least 6 months) while taking erlotinib or gefitinib. Hypothesis: T790M and/or c-Met are drivers in this population

Trial design
Open-label
Cohort 1: MTD of combination
Cohort 2: Dacomitinib until PD then MTD combination

Endpoints
Primary: Safety, dose-limiting toxicity
Secondary: PK, OR, DR, PFS, biomarkers

Afatinib*: In vitro profile

Afatinib is an irreversible ErbB receptor family blocker

<table>
<thead>
<tr>
<th>Molecular potency</th>
<th>Molecular selectivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>ErbB1 [nM] 0.5</td>
<td>Kinase panel 10 µM 0/50</td>
</tr>
<tr>
<td>ErbB2 [nM] 14</td>
<td>PanLab 10 µM 3/62</td>
</tr>
<tr>
<td>ErbB4 [nM] 1</td>
<td>CYP3A4 50 µM 0/6</td>
</tr>
<tr>
<td>VEGFR2 [nM] >10000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cellular activity</th>
<th>afatinib</th>
<th>erlotinib</th>
<th>gefitinib</th>
<th>lapatinib</th>
<th>neratinib</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFR - PO4 (A431)</td>
<td>13</td>
<td>5</td>
<td>35</td>
<td>105</td>
<td>22</td>
</tr>
<tr>
<td>H3555 caspase proliferation</td>
<td>0.7</td>
<td>40</td>
<td>5</td>
<td>63</td>
<td>7</td>
</tr>
<tr>
<td>HER2 - PO4 (BT474)</td>
<td>35</td>
<td>930</td>
<td>370</td>
<td>99</td>
<td>77</td>
</tr>
<tr>
<td>BT474 HER2 proliferation</td>
<td>12</td>
<td>829</td>
<td>1070</td>
<td>52</td>
<td>24</td>
</tr>
<tr>
<td>EGFR - PO4 (NCI-H1975)</td>
<td>93</td>
<td>>4000</td>
<td>>4000</td>
<td>>4000</td>
<td>579</td>
</tr>
<tr>
<td>NCI-H1975 caspase proliferation</td>
<td>99</td>
<td>>4000</td>
<td>>4000</td>
<td>>4000</td>
<td>172</td>
</tr>
</tbody>
</table>

Afatinib (BIBW2992)

PRECLINICAL

Anti-tumor activity of BIBW 2992 in NSCLC H1975 xenografts carrying EGFR L858R/T790M

- NSCLC patients with ≥12 weeks of prior TKI therapy and ≥1 chemo.
- n = 585 patients enrolled.
- Randomized 2:1 to afatinib or placebo.
- RR 7.4% with afatinib.
- PFS 3.3 vs 1.1 months (HR 0.38)

Yang C ASCO 2008
Miller VA ESMO 2010

LUX LUNG 1: STUDY DESIGN

A multicentre, randomized, double-blind Phase II/III trial of afatinib* plus best supportive care (BSC) versus BSC in patients with NSCLC who have progressed after chemotherapy and erlotinib or gefitinib

Study Population

- Adenocarcinoma of the lung
- Stage III/IV
- Progressed after one or two lines of chemotherapy (including one platinum-based regimen) and ≥12 weeks of treatment with erlotinib or gefitinib
- ECOG 0–2

N=585

Randomization

2:1

- Oral Afatinib* 50 mg once-daily plus BSC
- Oral placebo once-daily plus BSC

Primary endpoint: overall survival
Secondary endpoint: PFS

* BIBW 2992 or Afatinib is an investigational agent, its efficacy and safety have not been established. V Miller, et al. Ann Oncol 2008;21(suppl 8):Abstract LBA1 and presentation
LUX-Lung 1 – PFS by independent review

Hazard ratio (95% CI) = 0.38 (0.306, 0.475)
Log-rank test p-value <0.0001

LUX-Lung 1 – Updated overall survival (primary analysis)

Confounded by an imbalance of subsequent lines of chemotherapy

Placebo: Median 11.7 months
Afatinib: Median 11.0 months
HR=1.001
p=0.502
LUX-Lung 2: Trial design

LUX-Lung 2
A multicentre Phase II, open-label, single-arm trial of afatinib* in patients with NSCLC and EGFR mutation

Patients with:
• Adenocarcinoma of the lung
• Stage IIIb/IV
• EGFR mutation
• Chemo-naïve or progressive disease following first-line chemotherapy
• ECOG PS 0–2

N=120 (planned)

Oral afatinib once-daily
until disease progression or undue toxicity

Response assessment at 4, 8 and 12 weeks; every 8 weeks thereafter

Primary endpoint: Objective response rate (ORR)
Secondary Endpoint: Progression-free survival (PFS), disease control rate (DCR), overall survival (OS)

*This is an investigational agent. Its efficacy and safety have not been established.

LUX-Lung 2 –
Maximum decrease in target lesion size

LUX-Lung 2 – Progression-free survival

- Del15: PFS events = 28/52, median PFS = 14.6 months (95% CI: 11.9, NA)
- L858R: PFS events = 29/54, median PFS = 16.6 months (95% CI: 10.1, NA)
- Other: PFS events = 19/23, median PFS = 9.8 months (95% CI: 3.0, 13.1)

LUX-Lung 2 – Adverse events

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>Afatinib* 40 mg (n=30)</th>
<th>Afatinib 50 mg (n=99)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade 3†</td>
<td>All grades</td>
</tr>
<tr>
<td>Diarrhoea</td>
<td>2 (6.7%)</td>
<td>29 (96.7%)</td>
</tr>
<tr>
<td>Rash/acne</td>
<td>2 (6.7%)</td>
<td>27 (90.0%)</td>
</tr>
<tr>
<td>Nail effect</td>
<td>2 (6.7%)</td>
<td>24 (80.0%)</td>
</tr>
<tr>
<td>Stomatitis</td>
<td>–</td>
<td>15 (50.0%)</td>
</tr>
<tr>
<td>Pruritus</td>
<td>–</td>
<td>14 (46.7%)</td>
</tr>
<tr>
<td>Rhinorrhoea</td>
<td>–</td>
<td>7 (23.3%)</td>
</tr>
<tr>
<td>Dry skin</td>
<td>–</td>
<td>7 (23.3%)</td>
</tr>
<tr>
<td>Decreased appetite</td>
<td>2 (6.7%)</td>
<td>9 (30.0%)</td>
</tr>
<tr>
<td>Epistaxis</td>
<td>–</td>
<td>8 (26.7%)</td>
</tr>
<tr>
<td>Ocular effect</td>
<td>–</td>
<td>4 (13.3%)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>1 (3.3%)</td>
<td>7 (23.3%)</td>
</tr>
<tr>
<td>Nausea</td>
<td>–</td>
<td>5 (16.7%)</td>
</tr>
<tr>
<td>Weight decreased</td>
<td>–</td>
<td>3 (10.0%)</td>
</tr>
<tr>
<td>Lip effects</td>
<td>–</td>
<td>2 (6.7%)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>1 (3.3%)</td>
<td>4 (13.3%)</td>
</tr>
</tbody>
</table>

†This is an investigational agent. Its efficacy and safety have not been established.

‡No Grade 4 or 5 occurred for these events.

*Based on maximum tolerated dose of 90 mg.
A randomized, open-label, Phase III study of Afatinib* compared with chemotherapy as first-line treatment for patients adenocarcinoma of the lung harbouring an EGFR-activating mutation.

Patients with:
- Adenocarcinoma of the lung
- Presence of EGFR mutation in the tumour tissue
- Stage III/IV
- No prior treatment with chemotherapy for advanced/metastatic disease
- No prior treatment with EGFR inhibitors
- ECOG 0 or 1

Randomization

Afatinib* 40 mg orally once daily

Cisplatin+gemcitabine

N=330

Primary endpoint: PFS

Secondary endpoint: ORR

* BIBW 2992 or Afatinib is an investigational agent, its efficacy and safety have not been established.

A randomized, open-label, Phase III Study of afatinib* compared with chemotherapy as first-line treatment for patients with adenocarcinoma of the lung harbouring an EGFR-activating mutation.

Patients with:
- Adenocarcinoma of the lung
- Presence of EGFR mutation in the tumour tissue
- Stage III/IV
- No prior treatment with chemotherapy for advanced/metastatic disease
- No prior treatment with EGFR inhibitors
- ECOG 0 or 1

Randomization

Afatinib 40 mg orally once daily

Cisplatin+gemcitabine

N=330

Primary endpoint: PFS

Secondary endpoint: ORR

* BIBW 2992 or Afatinib is an investigational agent, its efficacy and safety have not been established.

1. LUX-Lung 6: Study Design
NSCLC patients with clinically defined AR (Jackman JCO 2010) received oral afatinib 40 mg daily with escalating dose cohorts of biweekly cetuximab at 250 and 500 mg/m2.

- 47 of 80 patients have been enrolled and received the predefined maximum dose (RP2D):
 - afatinib 40 mg +
 - cetuximab 500 mg/m2)

- Confirmed PRs were observed in 18/45 evaluable patients (40%), including 9/26 PRs in patients with documented T790M mutations.
Most Frequent Adverse Events at Recommended Dose

<table>
<thead>
<tr>
<th>Adverse event</th>
<th>Grade ≥3 n (%)</th>
<th>All Grades n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash</td>
<td>5 (8)</td>
<td>53 (87)</td>
</tr>
<tr>
<td>Diarrhea</td>
<td>3 (5)</td>
<td>40 (66)</td>
</tr>
<tr>
<td>Xerosis</td>
<td>1 (2)</td>
<td>34 (56)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>2 (3)</td>
<td>31 (51)</td>
</tr>
<tr>
<td>Skin fissures</td>
<td></td>
<td>29 (48)</td>
</tr>
<tr>
<td>Nausea</td>
<td></td>
<td>27 (44)</td>
</tr>
<tr>
<td>Headache</td>
<td>2 (3)</td>
<td>25 (41)</td>
</tr>
<tr>
<td>Paronychia</td>
<td>1 (2)</td>
<td>18 (30)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>1 (2)</td>
<td>18 (30)</td>
</tr>
</tbody>
</table>

Overcoming T790M: novel mutant-selective TKI

WZ4002 inhibits EGFR phosphorylation and induces significant tumour regression in murine models of EGFR T790M.

Zhou W et al., Nature 2009
MET amplification

- Present in 5-11% of clinical specimens from patients with acquired EGFR-TKI resistance.
- Leads to gefitinib resistance by driving ERBB3-dependent activation of PI3K (Engelman J, Science 2007).
- Inhibition of EGFR signaling induces HGF-mediated clonal selection of pretreatment MET amplification (Turke, Ca Cell 2010).
- MET inhibitors may be able to overcome MET-mediated resistance to EGFR kinase inhibitors, even in cells harboring T790M mutation (Bean J, PNAS 2007).

HGF mediated-resistance

- Recently, high-level HGF expression was detected both in tumors with intrinsic (29%) and acquired resistance (61%) (Yano JTO 2011).
- HGF induces gefitinib-resistance by restoring the PI3K/Akt pathway through Gab1, but not EGFR or ErbB3 (Yano, Cancer Res 2008; Turke, Ca Cell 2010).
- Inhibition of EGFR signaling induces HGF-mediated clonal selection of pretreatment MET amplification (Turke, Ca Cell 2010).
- A humanized MAb to HGF, TAK-701, combined with gefitinib, overcome gefitinib resistance induced by HGF in a preclinical model (Okamoto, Mol Ca Cell 2010).
- PI3K/Akt pathway inhibition could overcome HGF-mediated resistance to EGFR-TKIs (Donev IS, CCR 2011).
Treatment for patients resistant to EGFR-TKIs

Conclusions

- There is not a standard treatment for patients resistant to EGFR-TKIs.
- At least one third of the mechanisms of EGFR resistance remain to be defined → we need to re-biopsy patients.
- Irreversible EGFR inhibitors block the growth of NSCLC cell lines harboring T790M mutations, but have failed to demonstrate relevant activity in the clinical setting.
- Irreversible EGFR TKIs may play a role on NSCLC patients w/wo EGFR mutation not previously exposed to reversible TKIs.
- Promising data come from dual EGFR targeting, but must be confirmed in larger, well-defined sets of TKI resistant patients.
- New class of EGFR inhibitors and combination therapies targeting both EGFR signaling and related pathways have shown promising preclinical activity that have to be confirmed in the clinical setting.

Gracias

luis.pazares.sspa@juntadeandalucia.es