Patient Selection for allogeneic stem cell transplantation – in CLL

KOEN VAN BESIEN, MD
WEILL CORNELL MEDICAL COLLEGE, NY
Topics

- CLL
- “Complicated CLL”
- Richter’s transformation
What did we learn about allo-transplant for CLL?

- Allogeneic Transplant can be Curative
- Myeloablative Conditioning has been virtually abandoned for patient over 50.
 - Rightly or Wrongly....
- TRM influenced by
 - KPS
 - Pre-existing immunosuppression
 - Comorbidity
 - Less so by age
 - Less by Donor type
- Cure Rates Depend on Achievement of CR
- GVL effects play a role in achievement and maintenance of CR
- Those in CR for more than a year have an excellent outcome.
Outcomes of HLA-identical donor vs Haplo-Cord Transplantation in patients with AML-MDS ≥ 50

Rhodes et al, ASH 2014
Non-Myeloablative Transplant in 86 patients with CLL

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>58 (36-70)</td>
</tr>
<tr>
<td>MRD/MUD</td>
<td>43/43</td>
</tr>
<tr>
<td>Time from Dx (mo)</td>
<td>62 (6-307)</td>
</tr>
<tr>
<td>Richter’s</td>
<td>19 (22%)</td>
</tr>
<tr>
<td>Binet stage B/C</td>
<td>85%</td>
</tr>
<tr>
<td>CD5 in marrow</td>
<td>29% (0-94)</td>
</tr>
<tr>
<td>PET/Ga Pos</td>
<td>33%</td>
</tr>
<tr>
<td>High LDH</td>
<td>42%</td>
</tr>
<tr>
<td>B symptoms</td>
<td>28%</td>
</tr>
<tr>
<td>Zap 70+</td>
<td>80%</td>
</tr>
<tr>
<td>Unmutated IgH</td>
<td>72%</td>
</tr>
<tr>
<td>P53+/p21-</td>
<td>23%</td>
</tr>
<tr>
<td>IgG low and CD4 low</td>
<td>22%</td>
</tr>
<tr>
<td>Fludara resistant</td>
<td>83%*</td>
</tr>
</tbody>
</table>

But mostly low bulk disease
Non-Myeloablative Transplant in 86 patients with CLL

- Non-Relapse Mortality
 - Day 100: 3%
 - One year: 17%

- Acute GVHD:
 - Grade II-IV: 37%
 - Grade III-IV: 7%
 - Chronic GVHD: 56% (7 after DLI)

- Age doesn’t matter
- Low CD4/IgG is adverse prognostic factor
- p53 does not matter

Khouri et al, Cancer 2011
There is no effect of 17 p

Schetelig et al, JCO 2008

Poon et al, Leukemia Lymphoma 2015
What did we learn about allo-transplant for CLL?

- Allogeneic Transplant can be Curative
- Myeloablative Conditioning has been virtually abandoned for patient over 50.
 - Rightly or Wrongly....
- TRM influenced by
 - KPS
 - Pre-existing immunosuppression
 - Comorbidity
 - Less so by age
 - Less by Donor type
- Cure Rates Depend on Achievement of CR
- **GVL effects play a role in achievement and maintenance of CR**
- Those in CR for more than a year have an excellent outcome.
GVL effects play a role in the achievement of CR

Khouri et al, Cancer 2011
Boetcher et al, Blood reviews 2011
What did we learn about allo-transplant for CLL?

- Allogeneic Transplant can be Curative
- Myeloablative Conditioning has been virtually abandoned for patient over 50.
 - Rightly or Wrongly....
- TRM influenced by
 - KPS
 - Pre-existing immunosuppression
 - Comorbidity
 - Less so by age
 - Less by Donor type
- Cure Rates Depend on Achievement of CR
- GVL effects play a role in achievement and maintenance of CR
- **Those in CR for more than a year have an excellent outcome.**
Remissions persisting beyond one year after allo SCT for CLL are durable

Impact of MRD status at 12 mo on Long term relapse rates

Durability of MRD negativity

Boeticher, 2011
What did we learn about allo-transplant for CLL?

- Allogeneic Transplant can be Curative
- Myeloablative Conditioning has been virtually abandoned for patient over 50.
 - Rightly or Wrongly....
- TRM influenced by
 - KPS
 - Pre-existing immunosuppression
 - Comorbidity
 - Less so by age
 - Less by Donor type
- Cure Rates Depend on Achievement of CR
- GVL effects play a role in achievement and maintenance of CR
- **Those in CR for more than a year have an excellent outcome.**
- **Prolonged Survival is possible after relapse**
Survival Richter's vs CLL

<table>
<thead>
<tr>
<th>Rx given -CLL</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituximab/Ofatumumab</td>
<td>43/28</td>
</tr>
<tr>
<td>Imid</td>
<td>25</td>
</tr>
<tr>
<td>Purine analog/BR</td>
<td>20/15</td>
</tr>
<tr>
<td>HCVAD-OFAR</td>
<td>28</td>
</tr>
<tr>
<td>BTK</td>
<td>5</td>
</tr>
<tr>
<td>DLI/2nd SCT</td>
<td>16/2</td>
</tr>
<tr>
<td>No Rx</td>
<td>4</td>
</tr>
</tbody>
</table>

Survival Richter's vs CLL

Survival aGVHD vs not

Survival cGVHD vs not

Rozovski et al JCO 2015
New Therapies have changed the paradigm….

- BTK inhibitors
- PI3Kinase inhibitors
- BCL2 inhibitors
Among those patients whose initial response was PR-L, the majority achieved classic response by IWCLL criteria:

- TN: 9/13 (69%)
- R/R: 38/49 (78%)

Combined ORR + (PR-L):
- TN = (84%)
- R/R = (88%)
Ibrutinib: Progression Free Survival

Furman RR. IWCLL 2013.

No del17p or del11q est. PFS = 92.2%

del11q est. PFS = 72.9%

del17p est. PFS = 53.1%

TN est. PFS = 96.3%

R/R est. PFS = 73.6%

At 26 months:
For Now…

- Patients failing BTK inhibitors
- Patients with 17p abnormalities.
For now

- CLL: multiply relapsed – 17p
- “Complicated CLL”
- Richter’s transformation
Patient 1

- Male, 38
- PMH:
- PSH:
- Never smoked

Patient 2

- Male 57
- PMH: Bipolar, DM, cardiomyopathy, melanoma, fungal infection, cellulitis partial small bowel removal, GERD, obesity
- Never smoker
Patient 1
The Disease

- **CLL dx in 2008 (age 34)**
 - **Treatment:**
 - FIR → CR x 1 y
 - FR x6 → PD
 - CAT8015 (anti CD22) → Cap Leak
 - Ofatumumab → PD
 - Benda Rituximab → PD
 - HD MP +Rituximab → PD
 - **Current status:**
 - Profoundly pancytopenic.
 - Tx dependent
 - Possible MDS
 - Iron overload

Patient 2
The Disease

- **CLL dx in 2002 (age 47)**
 - **Treatment:**
 - CVP x6
 - FR x5
 - PCR x23
 - Benda-R
 - Cytoxan-doxorubicin-VP-PDN
 - MTX-VCR
 - Chlorambucil
 - Thalidomide
 - Alemtuzumab
 - HDMP +Ofatumumab IVIG
 - Alemtuzumab
 - 2010: PCI-32765
 - **Current status:**
 - Profoundly pancytopenic.
 - Tx dependent
 - Cytogenetics 46, XY(del20), (q11.2)
Patient 1
Outcomes

- No related or unrelated donor
- Haplo Cord Transplant
 - Conditioning Fludarabine MeI ATG
- Engrafted d15
- Post Tx complications:
 - Adenovirus viremia/pharyngitis
 - Transient poly arthritis –(Dciff?)
 - Hives
- Currently 26 mo post tx
 - CLL MRD neg
 - No GVHD
 - Perfect health
 - Phlebotomies for Iron overload

Magro et al, Haematologica 91, 540, 2006,
Liu et al, Blood 118, 6438, 2011
Patient 1

Outcome

- No related or unrelated donor
- Haplo Cord Transplant
 - Conditioning Fludarabine Mel ATG
- Engrafted d15
- Post Tx complications:
 - Adenovirus viremia
 - Transient poly arthritis
- Currently 28 mo post tx
 - No GVHD
 - Perfect health
 - MRD negative
 - Phlebotomies for Iron overload

Patient 2

Outcome

- Unrelated donor
- MUD transplant
 - Conditioning Fludarabine Melphalan Alemtuzumab
- Engrafted d15
- Post Tx complications
 - Strep mitis sepsis
 - Acute GVHD gr II
- Currently 38 months post tx
 - No GVHD
 - Good health
 - MRD 0.2%
For now

- CLL multiply relapsed, 17p
- “Complicated CLL”
- Richter’s transformation
Survival in patients who responded to initial therapy by subsequent stem-cell transplantation (SCT).

Apostolia-Maria Tsimberidou et al. JCO 2006;24:2343-2351
Patient 3

- 71 year old male
- Hx of smoking, mild emphysema
- 10 yr hx of stage 0-1 CLL: no treatment
- New Gallium Avid lymphadenopathy
- Bx: DLBCL ---Ig sequencing clonally related.
- RCHOP: CR with residual uptake in lung lesion
Conclusion

- Allo SCT continues to be the only curative therapy.
- Indications are rapidly changing and include
 - Failure of first line therapy -17 P
 - T-MDS/AML
 - Richter’s
- Outcomes are dependent on
 - Disease response
 - Degree of immunosuppression
 - NOT
 - Donor Type
 - Age
- Challenge: Avoidance of Chronic GVHD and maximizing GVL
 - Allo Transplant + post-transplant maintenance?
Thanks

UIC - UC
W. Stock
R. Larson
A. Artz
J. Kline
S. Smith
T. Zimmerman
H. Liu
L. Godley
O. Odenike

WCMC
T. Shore
S. Mayer
A. Phillips
U. Gergis
R. Furman
P. Martin
J. Leonard
M. Coleman

Nursing
Coordination
Data Management
Pharmacy
Apheresis
Stem Cell Lab

PATIENTS AND STEM CELL DONORS