CARs to Armored CARs: T cell Treatment of Cancer

Lymphoma and Myeloma 2015
New York, NY
October 22, 2015

Renier Brentjens MD PhD
Associate Member
Leukemia Service
Chief, Cellular Therapeutics Center
Department of Medicine
Memorial Sloan Kettering Cancer Center
Conflict of Interest Disclosure
Renier Brentjens MD PhD

• **Stockholder**: Juno Therapeutics (scientific co-founder)
• **Royalties**: Juno Therapeutics
• **Honoraria**: none
• **Research Funding**: Juno Therapeutics
• **Consultant fees**: Juno Therapeutics
• **Discussion of off-label drug use**: Tocilizumab
Generation of a tumor targeted chimeric antigen receptor (CAR)

α-TAA mAb

TCR complex

α-TAA scFv—CD8-ζ

CAR retroviral vector
Generation of TAA-targeted T cells for treatment of Cancer

1. Construct a chimeric antigen receptor (CAR)

2. Subclone CAR gene into a retroviral vector (SFG)

3. Transduce and expand patient T cells \textit{ex vivo}

4. Infuse transduced T cells to eradicate TAA$^+$ tumor cells
Advantages of CAR T cell therapy

- HLA-independent antigen recognition, therefore universal application
- Active in both CD4\(^+\) and CD8\(^+\) T cells
- Target antigens include proteins, carbohydrates and glycolipids
- Rapid generation of tumor specific T cells
- Minimal risk of autoimmunity or GvHD
- A living drug, single infusion
Expression of CD19 and other B cell markers on B lineage cells

Stem Cell → pro B → pre B → immature B → mature B → plasma cell

- CD19
- CD22
- CD20

preB-ALL

B cell lymphomas and leukemias

myelomas
Evolution in CAR design

First-Generation CAR
scFv-CD3ζ

Second-Generation CAR
scFv-CD28-CD3ζ

Third-Generation CAR
scFv-CD28-4-1BB-CD3ζ
scFv-CD28-OX40-CD3ζ
2nd generation CARs: *in vivo*

Brentjens et al Clin Cancer Res. 2007 Sep 15;13(18 Pt 1):5426-35
Clinical trials using CD19 targeted T cells in relapsed B cell ALL
A Phase I trial of precursor B cell Acute Lymphoblastic Leukemia (B-ALL) treated with autologous T cells genetically targeted to the B cell specific antigen CD19

• **Inclusion Criteria:**
 – Adult patients, age ≥18
 – Relapsed or refractory CD19+ B-ALL
 – Relapsed after allogeneic HSCT allowed

• **Exclusion Criteria:**
 – Active CNS disease
 – Active GvHD requiring immunosuppressants
 – Significant heart disease (MI ≤ 6 months or NYHA III/IV CHF or EF <40%)
Study Design

Leukapheresis

T Cell Production

Salvage Chemo

CTX Conditioning

19-28z CAR T Cell Infusion (1-3x10^6 CAR T cells/kg)

Day -2

BMB

LP + IT Chemo

Day 1

Disease Assessment

Post-Treatment Follow UP
Patient characteristics and treatment outcomes

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Age (years)</th>
<th>FISH/cytogenetics</th>
<th>Initial therapy</th>
<th>Duration of CR1</th>
<th>Salvage therapy</th>
<th>Disease response to salvage therapy</th>
<th>Disease response to cell therapy</th>
<th>Steroids</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSK-ALL01</td>
<td>66</td>
<td>Normal karyotype</td>
<td>Mito/Cy→Vinc/Pred→Cy→Etop/Cy</td>
<td>27 weeks</td>
<td>Vinc/Pred/Peg</td>
<td>MRD⁺</td>
<td>MRD⁻</td>
<td>N</td>
<td>Allo-SCT</td>
</tr>
<tr>
<td>MSK-ALL03</td>
<td>56</td>
<td>Normal karyotype</td>
<td>Hyper-CVAD</td>
<td>45 weeks</td>
<td>Inotuzumab ozogamicin→Vinc/Pred/Peg</td>
<td>MRD⁻</td>
<td>MRD⁻</td>
<td>N</td>
<td>Allo-SCT</td>
</tr>
<tr>
<td>MSK-ALL04</td>
<td>59</td>
<td>t(9;11), 9p21 deletion</td>
<td>ECOG2993 (24)</td>
<td>5 weeks</td>
<td>Vinc/Pred</td>
<td>Refractory disease, 63% blasts in BM</td>
<td>MRD⁻</td>
<td>Y</td>
<td>Ineligible for Allo-SCT, relapse 90 days</td>
</tr>
<tr>
<td>MSK-ALL05†</td>
<td>58</td>
<td>9p21 deletion</td>
<td>ECOG2993</td>
<td>28 weeks</td>
<td>HIDAC/Mito</td>
<td>Refractory disease, 70% blasts in BM</td>
<td>MRD⁻</td>
<td>Y</td>
<td>Allo-SCT</td>
</tr>
<tr>
<td>MSK-ALL06</td>
<td>23</td>
<td>Normal karyotype</td>
<td>NYII (25)</td>
<td>34 months</td>
<td>Modified NYII consolidation I (25)</td>
<td>MRD⁺</td>
<td>MRD⁻</td>
<td>N</td>
<td>Allo-SCT</td>
</tr>
</tbody>
</table>

*MSK-ALL02 patient was removed from the study before the planned T cell infusion because he deferred T cell infusion for an allo-SCT. †Disease status within 1 week of infusion with CD19-targeted T cells. ‡This patient's T cells were harvested while in remission. All other patients listed had their T cells harvested while they had relapsed disease.
Rapid tumor elimination and recovery of normal bone marrow after 19-28z CAR T cell therapy

Sci Transl Med. 2013 Mar 20;5(177):177ra38
Study Progress

• As of 30 March 2015, 39 adult patients with relapsed/refractory ALL treated with 19-28z CAR T cells at MSKCC
 – 39 patients evaluable for toxicity assessment
 – 38 patients evaluable for response assessment with ≥1 month follow up
Baseline Patient Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number of Patients N=39 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sex</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>29 (76)</td>
</tr>
<tr>
<td>Female</td>
<td>10 (24)</td>
</tr>
<tr>
<td>Age at infusion (years)</td>
<td></td>
</tr>
<tr>
<td>18-29</td>
<td>10 (26)</td>
</tr>
<tr>
<td>30-59</td>
<td>19 (49)</td>
</tr>
<tr>
<td>≥60</td>
<td>10 (26)</td>
</tr>
<tr>
<td>Median (range)</td>
<td>45 (22-74)</td>
</tr>
<tr>
<td>Disease burden immediately prior to T cells</td>
<td></td>
</tr>
<tr>
<td>Morphologic disease (5-100%, median 52%)</td>
<td>21 (54)</td>
</tr>
<tr>
<td>Minimal residual disease (<5%)</td>
<td>18 (46)</td>
</tr>
</tbody>
</table>
Baseline Disease Characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Number of Patients, N=39 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior Lines of Therapy</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>19 (49)</td>
</tr>
<tr>
<td>3</td>
<td>9 (23)</td>
</tr>
<tr>
<td>≥4</td>
<td>11 (28)</td>
</tr>
<tr>
<td>Prior allogeneic HSCT</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>14 (36)</td>
</tr>
<tr>
<td>No</td>
<td>25 (64)</td>
</tr>
<tr>
<td>Philadelphia chromosome (Ph)+ T315I mutation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 (33)</td>
</tr>
<tr>
<td></td>
<td>4 (11)</td>
</tr>
</tbody>
</table>
Summary of Clinical Outcomes

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Number of Patients, N=38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall CR Rate, n (%) [95% CI]</td>
<td>33/38 (87%) [72, 96]</td>
</tr>
<tr>
<td>MRD Negative CR Rate, n (%) [95% CI]</td>
<td>26/32 (81%) [64, 93]</td>
</tr>
<tr>
<td>Median Time to CR (Range)</td>
<td>23.0 days (8 – 46)</td>
</tr>
</tbody>
</table>
CR Rates by Subgroups

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>CR Rate (%)</th>
<th>MRD Negative CR Rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-T cell Disease Burden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphologic disease</td>
<td>16/20 (80)</td>
<td>13/15 (87)</td>
</tr>
<tr>
<td>Minimal residual disease</td>
<td>17/18 (94)</td>
<td>13/17 (76)</td>
</tr>
<tr>
<td>Prior Allogeneic HSCT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>11/13 (85)</td>
<td>9/10 (90)</td>
</tr>
<tr>
<td>No</td>
<td>22/25 (88)</td>
<td>17/22 (77)</td>
</tr>
<tr>
<td>Ph+ Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>12/13 (92)</td>
<td>8/12 (67)</td>
</tr>
<tr>
<td>No</td>
<td>21/25 (84)</td>
<td>18/20 (90)</td>
</tr>
<tr>
<td>Age at infusion (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-29</td>
<td>9/10 (90)</td>
<td>7/9 (78)</td>
</tr>
<tr>
<td>30-59</td>
<td>16/18 (89)</td>
<td>11/15 (73)</td>
</tr>
<tr>
<td>≥60</td>
<td>8/10 (80)</td>
<td>8/8 (100)</td>
</tr>
<tr>
<td>Prior Lines of Therapy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>16/18 (89)</td>
<td>13/16 (81)</td>
</tr>
<tr>
<td>3</td>
<td>7/9 (78)</td>
<td>5/7 (71)</td>
</tr>
<tr>
<td>≥4</td>
<td>10/11 (91)</td>
<td>8/9 (89)</td>
</tr>
</tbody>
</table>
Post-CAR T Cell Follow Up

- Median follow-up: 5.6 months (1-38+ months)
- Median duration of response or relapse free-survival: 5.3 months (95% CI: 3-9)
- 14 patients remain disease-free: 10 patients w/o HSCT
 - 6 patients with > 1 year follow up
- 11 patients proceeded to allogeneic HSCT
- 14 patients relapsed during follow-up
 - 3 relapses post-HSCT (2 patient with CD19 negative blasts)
 - 10 relapses without HSCT
Overall Survival: All Patients

All Patients
- Median OS = 8.5 months
- OS Rate at 6 mos: 59% (95% CI: 39-74)

MRD-CR Patients
- Median OS = 10.8 months
- OS Rate at 6 mos: 75% (95% CI: 50-89)

At Risk
- 38
- 22
- 12
- 7
- 5
- 5
- 2
- 2
- 1
- 1
- 0

Memorial Sloan Kettering Cancer Center
Overall Survival:
By Allo-SCT Status Among CR Subjects

Allo-SCT Post-CAR
mOS=9.9 mos
OS rate at 6 month: 70% (95% CI: 33-89)

No Allo-SCT Post-CAR
mOS=8.5 mos
OS rate at 6 month: 62% (95% CI: 34-81)

Log-rank p=0.5

At Risk
11 10 6 4 3 3 2 2 2 1 1 0
22 12 6 3 2 2 0 0 0 0 0 0
19-28z CAR T Cell Expansion & Persistence

- 19-28z CAR T cells were measured in PB and BM by qPCR and flow cytometry
- Maximum T cell expansion occurred between days 7 – 14, and correlated with occurrence of CRS
- T cells persisted 1 – 3 months following T cell infusion
Adverse Events

- Cytokine release syndrome (CRS)
 - Fever
 - Hypotension
 - Respiratory insufficiency

- Neurological changes
 - Delirium
 - Global encephalopathy
 - Aphasia
 - Seizure-like activities/seizure
CRS & Neurological Toxicities

<table>
<thead>
<tr>
<th>Subgroups</th>
<th>Severe CRS*</th>
<th>Grade 3/4 Neurotoxicity</th>
<th>Grade 5 Toxicity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall (n=39)</td>
<td>9 (23)</td>
<td>11 (28)</td>
<td>3 (8)¶</td>
</tr>
<tr>
<td>Pre-T cell Disease Burden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morphologic disease (n=21)</td>
<td>9 (43)</td>
<td>8 (38)</td>
<td>2 (10)</td>
</tr>
<tr>
<td>MRD (n=18)</td>
<td>0 (0)</td>
<td>3 (17)</td>
<td>1 (6)</td>
</tr>
</tbody>
</table>

*Requiring vasopressors and/or mechanical ventilation for hypoxia
¶1 pt with ventricular arrhythmia (DNR); 1 pt had seizure, but unknown cause of death; and 1 pt died of sepsis.

- Severity of CRS correlated with disease burden.
- CRS managed with IL-6R inhibitor (4 pts), steroid (2 pts), IL-6R inhibitor+steroid (9 pts)
- Neurological symptoms are reversible, and can occur independent of CRS
Adverse Events: Cytokine Release Syndrome

- Cytokine release syndrome (CRS)
 - fevers, hypotension, hypoxia, malaise

- Neurologic changes*
 - confusion, speech disorders, obtundation, seizure-like activities

- There is a strong correlation between sCRS and pre-T cell disease burden

- 0/10 sCRS in MRD patients
- 8/11 sCRS in Morphologic residual pts
Management of sCRS
Summary of CAR T cell in adult ALL at MSKCC

- 39 adult patients with relapsed or refractory B-ALL have been treated with 19-28z CAR T cells, and 38 patients are evaluable for response.
- High CR rate (87%) can be achieved in adults with R/R B-ALL.
 - Majority of CR is MRD negative (81%).
 - Similar CR rates regardless of disease status, Ph+, age or prior alloHSCT.
- Median time to CR is 23 days.
- 33% of patients proceeded to alloHSCT after achieving CR with CAR T cells.
- Durable responses have been observed in a subset of patients with no subsequent alloHSCT.
 - Depth of response (i.e. MRD negativity) is correlated with overall survival.
- Severe CRS (23%) and neurological toxicities (28%) have been observed and correlate with disease burden and response.
UPenn studies of relapsed B-ALL

- 25 pediatric and 5 adult relapsed or refractory B-ALL patients treated
- 19-4-1BBz CAR design
- 90% CR
- 6 month EFS 67%
- 6 month OSR 78%

NCI studies of relapsed B-ALL

- 20 pediatric and young adult relapsed or refractory B-ALL patients treated.
- 19-28z CAR design
- 70% CR (14/20)
- 60% MRD- CR
- 5 month EFS 78% in MRD- patients
Clinical trials using CD19 targeted T cells other B cell malignancies
Early NCI clinical trial results

Patient with relapsed follicular NHL

Prior Therapies: PACE, idiotype vaccine, ipilimumab, EPOCH-R

Conditioning: high dose cyclophosphamide with fludarabine

Post infusion: IL-2 tid x 3 days

Response: PR with persistent B cell aplasias

Kochenderfer et al Blood 2010

An additional 7 patients plus retreatment of patient 1 with low grade B cell malignancies

Prior Therapies: Not Reported

Conditioning: high dose cyclophosphamide with fludarabine

Post infusion: IL-2 tid as tolerated

Response: 1/8 CR, 4/8 PR with persistent B cell aplasias in 4/8 patients treated

Kochenderfer et al Blood 2011
NCI studies of relapsed B cell lymphomas

- 15 patients with relapsed B cell lymphomas
 - 9 with DLBCL
 - 4 with CLL
 - 2 with low grade lymphomas

- 19-28z CAR design

- 8/15 CRs
 - 4/7 with DLBCL (3/4 ongoing 9-22 mo)
 - 3/4 with CLL
UPenn clinical trial results

<table>
<thead>
<tr>
<th>Patient</th>
<th>Prior Chemotherapy</th>
<th>Conditioning Chemotherapy</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fludarabine, Rituximab, Alemtuzumab, R-CVP, Lenolidomide, PCR</td>
<td>Bendamustine</td>
<td>CR (3+ years)</td>
</tr>
<tr>
<td>2</td>
<td>Alemtuzumab</td>
<td>Bendamustine/Rituximab</td>
<td>PR (7 months)</td>
</tr>
<tr>
<td>3</td>
<td>Rituximab/Fludarabine, Rituximab/Bendamustine, Alemtuzumab</td>
<td>Pentostatin/Cyclophosphamide</td>
<td>CR (3+ years)</td>
</tr>
</tbody>
</table>
Updated UPenn Trials in CLL (ASH 2013)

- **Abstract 4162**
 - CD19 CAR T cells treating relapsed/refractory CLL
 - Utilizing a 4-1BBz CAR construct, 14 CLL patients treated
 - 3/14 patients obtained CR (21%), 5/14 patients obtained PR (36%), 6/14 patients with no response (43%)
 - 6/14 patients with persistent detectable CAR T cells (5-35 months)
 - No CR patients with reported relapsed disease
 - No dose response reported

- **Abstract 873**
 - Dose randomized dose optimization trial of CLL patients with either high or low dose CAR T cell infusions
 - Utilizing a 4-1BBz CAR construct, 27 CLL patients treated
 - Patients randomized to either low dose (5×10^7 CAR T cells) or high dose (5×10^8 CAR T cells)
 - No dose response benefit seen in these treated patients
 - Overall response rate (CR + PR) was 40%
 - No correlation with CRS and RR was observed
MSKCC clinical trial results: CLL

Table 1. Patient characteristics

<table>
<thead>
<tr>
<th>Diagnosis-Patient</th>
<th>Age at Diagnosis (years)</th>
<th>Age at Treatment (years)</th>
<th>Sex</th>
<th>Indication for Treatment</th>
<th>Prior Therapies</th>
<th>Genetic Abnormalities/ IgV(_H) Mutation Status</th>
<th>WBC (x10(^3) /ul)</th>
<th>ALC (x10(^3) /ul)</th>
<th>Hgb (g/dL)</th>
<th>PLT (x10(^3) /ul)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLL-1</td>
<td>44</td>
<td>51</td>
<td>M</td>
<td>Bulky LAD</td>
<td>PCR, PCRM</td>
<td>deli1q</td>
<td>200.6</td>
<td>196.6</td>
<td>7.1</td>
<td>26</td>
</tr>
<tr>
<td>CLL-2</td>
<td>66</td>
<td>72</td>
<td>M</td>
<td>Bulky LAD</td>
<td>FR, RCVP, PCRM</td>
<td>Unmutated IgV(_H)</td>
<td>4.2</td>
<td>3.4</td>
<td>9.9</td>
<td>60</td>
</tr>
<tr>
<td>CLL-3</td>
<td>62</td>
<td>73</td>
<td>F</td>
<td>Bulky LAD</td>
<td>Chlorambucil, PCR, PCRM</td>
<td>Normal karyotype</td>
<td>136.4</td>
<td>132.3</td>
<td>8.9</td>
<td>100</td>
</tr>
<tr>
<td>CLL-4</td>
<td>63</td>
<td>69</td>
<td>M</td>
<td>Bulky LAD</td>
<td>R, PCRM</td>
<td>deli1q</td>
<td>187.1</td>
<td>174</td>
<td>9.9</td>
<td>189</td>
</tr>
<tr>
<td>CLL-5</td>
<td>65</td>
<td>68</td>
<td>M</td>
<td>Bulky LAD</td>
<td>PCR</td>
<td>deli1q, trisomy 12</td>
<td>76.3</td>
<td>66.4</td>
<td>10</td>
<td>162</td>
</tr>
<tr>
<td>CLL-6</td>
<td>56</td>
<td>68</td>
<td>M</td>
<td>Bulky LAD</td>
<td>RCVP, PCR, Bendamustine</td>
<td>deli1q, inv1, unmutated IgV(_H)</td>
<td>97.1</td>
<td>92.2</td>
<td>8.9</td>
<td>174</td>
</tr>
<tr>
<td>CLL-7</td>
<td>52</td>
<td>62</td>
<td>M</td>
<td>Bulky LAD</td>
<td>CVP, RC, PCR, PCRM</td>
<td>deli7p, unmutated IgV(_H)</td>
<td>1.9</td>
<td>1</td>
<td>10</td>
<td>61</td>
</tr>
<tr>
<td>CLL-8</td>
<td>58</td>
<td>61</td>
<td>M</td>
<td>Bulky LAD</td>
<td>RCVP, Alemtuzumab</td>
<td>deli7p, monosomy 14, monosomy 15</td>
<td>5.4</td>
<td>3.3</td>
<td>11.6</td>
<td>41</td>
</tr>
</tbody>
</table>

Table 5. Summary of patient responses

<table>
<thead>
<tr>
<th>Diagnosis-Patient</th>
<th>Response to T-cell infusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLL-1</td>
<td>No objective response</td>
</tr>
<tr>
<td>CLL-2</td>
<td>No objective response</td>
</tr>
<tr>
<td>CLL-3</td>
<td>No objective response</td>
</tr>
<tr>
<td>CLL-4</td>
<td>Not evaluable</td>
</tr>
<tr>
<td>CLL-5</td>
<td>Marked reduction in lymphadenopathy at 3 months subsequently stable for 6 months</td>
</tr>
<tr>
<td>CLL-6</td>
<td>Progressive disease</td>
</tr>
<tr>
<td>CLL-7</td>
<td>Stable disease, lasting 4 months</td>
</tr>
<tr>
<td>CLL-8</td>
<td>Stable disease, lasting >8 weeks</td>
</tr>
</tbody>
</table>

Brentjens et al Blood. 2011 Nov 3;118(18):4817-28
Clinical Trial Treatment Schema I: Screening & CAR-modified T cell production

Previously untreated CLL with high-risk disease features
Unmutated IGHV del11q or del17p
Age ≥18 years

PCR x 6 cycles
Pentostatin
Cyclophosphamide
Rituximab

MRD-CR
MRD+CR
PR
Leukapheresis
T cell modification & production
SD
PD
Summary of Response Rates

<table>
<thead>
<tr>
<th>Cohort</th>
<th>Patient</th>
<th>Age</th>
<th>Disease Risk</th>
<th>Response after PCR</th>
<th>T Cell Dose</th>
<th>Response after T Cells</th>
<th>Follow-Up Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>59</td>
<td>UM IgHV</td>
<td>PR</td>
<td>3×10^6 19-28z/kg</td>
<td>MRD+CR</td>
<td>17 months</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>68</td>
<td>Del11q</td>
<td>PR</td>
<td>$3 \times 10^6$19-28z/kg</td>
<td>PR</td>
<td>14 months</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>45</td>
<td>UM IgHV</td>
<td>PR (LN >3cm)</td>
<td>3×10^6 19-28z/kg</td>
<td>PD in LN only at 6 months (marrow CR)</td>
<td>13 months</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>56</td>
<td>UM IgHV</td>
<td>PR (LN >5cm)</td>
<td>1×10^7 19-28z/kg</td>
<td>PD</td>
<td>11 months</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>66</td>
<td>UM IgHV</td>
<td>PR</td>
<td>1×10^7 19-28z/kg</td>
<td>PR</td>
<td>11 months</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>68</td>
<td>UM IgHV, trisomy 12</td>
<td>PR</td>
<td>1×10^7 19-28z/kg</td>
<td>CR</td>
<td>4 months</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>54</td>
<td>UM IgHV, del11q</td>
<td>PR (LN >5cm)</td>
<td>3×10^7 19-28z/kg</td>
<td>CR</td>
<td>2 months</td>
</tr>
</tbody>
</table>

No sCRS in any treated patients on this clinical trial
Phase I Trial of 19-28z Chimeric Antigen Receptor Modified T cells (19-28z CAR-T) Post-High Dose Therapy and Autologous Stem Cell Transplant (HDT-ASCT) for Relapsed and Refractory (rel/ref) Aggressive B Cell Non-Hodgkin Lymphoma (B-NHL)

Craig S. Sauter PI
Advantages of 19-28z CAR T cells Post-Ablative Chemotherapy and ASCT

• Modulation of a hostile immune suppressive tumor microenvironment
 – elimination of regulatory T cells, myeloid derived suppressor cells

• Elimination of cytokine “sinks” for optimized proliferative expansion of 19-28z CAR T cells
Eligibility Criteria

- Patients ≥ 18 years old with relapsed or refractory aggressive histology B-NHL meeting at least one of the following criteria:
 - PET positive disease following ≥ 2 cycles of salvage chemotherapy, though still achieving chemosensitive status per 1999 IWG CT criteria.
 - Bone marrow involvement at the time of relapse or refractory disease and not appropriate for allogeneic transplantation.

Adequate organ function:
- cardiac function (LVEF > 40%)
- pulmonary function as assessed by DLCO of ≥ 45%
- renal function GFR ≥ 50 cc/min or serum creatinine ≤ 1.5 mg/dL
- liver function AST/ALT < 3x upper limit of normal bilirubin < 2 mg/dL
Schema

Salvage Chemotherapy, Leukapheresis, CAR T cell generation

Admission to BMT Service

BEAM Conditioning

-7 -6 -5 -4 -3 -2 -1 0 +1 +2 +3

Pegfilgrastim

ASCT

Infusion 19-28z CAR T cells

Anticipated engraftment

Dose Level -1 – 2x10^6 CAR/kg
Dose Level 1 – 5 x 10^6 CAR/kg
Dose Level 2 – 1 x 10^7 CAR/kg
Dose Level 3 – 2 x 10^7 CAR/kg

Days

+10
Objectives

Primary Objective:

• To assess the safety and maximum tolerated dose (MTD) of 19-28z CAR T cell infusion following high dose therapy and CD34+ autologous stem transplantation for CD 19+ relapsed and refractory aggressive histology B-NHL.

Secondary Objectives:

• 1 and 2 year PFS.
• Assess for modified T cell persistence.
<table>
<thead>
<tr>
<th>Patient #</th>
<th>Age</th>
<th>histology/ #lines of therapy</th>
<th>Status at HDT-ASCT</th>
<th>Dose CAR-T (x10^6/kg)</th>
<th>Clinically Relevant ≥ grade 3 non-heme AE</th>
<th>Cytokine release syndrome(^1) (CRS)/Rx</th>
<th>Peak CRP (mg/dL)</th>
<th>Best Response/PFS (months)</th>
<th>Cur Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34</td>
<td>tFL/3</td>
<td>PET(+) PR</td>
<td>5</td>
<td>Gr3 CRS (mental status (MS) changes)</td>
<td>Yes/Toc(^*) x1</td>
<td>27.3 (D4)</td>
<td>CR/20+</td>
<td>CR</td>
</tr>
<tr>
<td>2</td>
<td>68</td>
<td>DLBCL/4</td>
<td>PET(+) PR</td>
<td>5</td>
<td>Gr3 febrile neutropenia, Gr3 MS changes</td>
<td>Yes/None</td>
<td>16.5 (D4)</td>
<td>CR/21+</td>
<td>CR</td>
</tr>
<tr>
<td>3</td>
<td>56</td>
<td>tMZL/2</td>
<td>PET(+) PR BM involved</td>
<td>5</td>
<td>Gr3 hypophosphatemia</td>
<td>No</td>
<td>17.6 (D3)</td>
<td>CR/12</td>
<td>Alive, POD</td>
</tr>
<tr>
<td>4</td>
<td>59</td>
<td>tFL/DHL/2</td>
<td>PET(+) PR</td>
<td>10</td>
<td>Gr3 hypocalcemia, Gr3 AST/ALT, Gr4 CRS (hypotension, AKI, MS changes)</td>
<td>Yes/Toc(^*) x1+dex</td>
<td>43.1 (D3)</td>
<td>CR/15+</td>
<td>CR</td>
</tr>
<tr>
<td>5</td>
<td>66</td>
<td>DLBCL/3</td>
<td>PET(+) PR</td>
<td>5</td>
<td>Gr3 hyperglycemia</td>
<td>No</td>
<td>5 (D3)</td>
<td>CR/13+</td>
<td>CR</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>CD5+ DLBCL/2</td>
<td>PET(+) PR</td>
<td>5</td>
<td>none</td>
<td>No</td>
<td>7.9 (D4)</td>
<td>SD/6</td>
<td>Alive, POD</td>
</tr>
<tr>
<td>7</td>
<td>65</td>
<td>BL/2</td>
<td>PET(+) PR BM involved</td>
<td>5</td>
<td>Gr3 CRS (MS changes,), Gr3 febrile neutropenia, Gr3 hyperglycemia</td>
<td>Yes/Toc(^*)x1</td>
<td>11.8 (D7)</td>
<td>CR/2</td>
<td>POD/ DOD</td>
</tr>
<tr>
<td>8</td>
<td>56</td>
<td>DLBCL/DHL/2</td>
<td>PET (+) PR</td>
<td>5</td>
<td>Gr3 electrolytes, Gr3 CRS (seizure) Gr3 respiratory failure, Gr3 febrile neutropenia, Gr 4 cytopenias, Gr 5 infection (mucormycosis)</td>
<td>Yes/Toc(^*) x1</td>
<td>18.1 (D4)</td>
<td>Not-evaluated (NE)</td>
<td>NRM /1 month</td>
</tr>
<tr>
<td>9</td>
<td>51</td>
<td>DLBCL/2</td>
<td>PET (+) PR</td>
<td>5</td>
<td>Gr3 febrile neutropenia</td>
<td>No</td>
<td>31.8 (D3)</td>
<td>POD/2</td>
<td>DOD</td>
</tr>
<tr>
<td>10</td>
<td>61</td>
<td>blastoid MCL/4</td>
<td>PET CR, leukemic phase</td>
<td>5</td>
<td>Gr3 CRS (MS changes)</td>
<td>Yes/Toc(^*) x 1+dex</td>
<td>16.5 (D5)</td>
<td>POD/2</td>
<td>Alive</td>
</tr>
<tr>
<td>11</td>
<td>75</td>
<td>Richter’s/2</td>
<td>PET (+) PR</td>
<td>5</td>
<td>Gr 3 febrile neutropenia, Gr 4 CRS (encephalopathy)</td>
<td>Yes/Toc(^*) x 1+dex</td>
<td>22.8 (D5)</td>
<td>NE current d30</td>
<td>NE</td>
</tr>
</tbody>
</table>

\(^1\) Lee et al Blood 124(2): 2014

Dose-limiting toxicity, \(^*\)tocilizumab, +continuous response
NRM: non-relapse mortality, POD: progression of disease, DOD: dead of disease
Summary

• 19-28z CAR T cells are safe post HDT-ASCT at 5x10^6/kg (DLT 1/10 patients)
• 7 of 11 patients experienced ≥ grade 3 CRS, predominately CNS toxicity, with full reversibility
• variable IL-6 and CRP with or without CRS
• 4 of 10 evaluable patients remain progression-free at 13-21 months post HDT-ASCT
• Currently expanding dose level #1 (5 x 10^6/kg 19-28z CAR T cells) to further establish safety
NCI studies of CAR T cell DLI

- 10 post-transplant patients with persistent B cell malignancies
 - 4 MCL
 - 4 CLL
 - 2 DLBCL
- 0-1 grade GvHD with prior unmodified DLI therapy
- Single infusion of 19-28z donor CAR T cells
- 3 PRs, 1 patient with CLL achieved a CR.
- No evidence of GvHD

Kochenderfer et al Blood 2013
Conclusions

• Marked anti-tumor efficacy of CD19 targeted CAR T cells in relapsed B-ALL across multiple centers serves as a proof of principle regarding the potential of this adoptive T cell approach to cancer.

• Markedly positive clinical outcomes in relapsed B-ALL with CD19 targeted CAR T cell therapy may dramatically alter the standard of care for this disease pending phase II registration clinical trials.

• More modest responses in the setting of low grade B cell malignancies suggests that additional modification of this CAR T cell approach is required to optimize this therapy in this setting.

• Assessment of the B cell tumor microenvironment and BM cellularity at the time of CAR T cell therapy may offer clues to optimizing CAR T cell therapy.

• The ultimate goal of this research is to expand this technology to the setting of solid tumor malignancies.
Renier Brentjens
Hollie Pegram
Mythili Koneru
Swarish Rafiq
Swati Pendeharkar
James Lee
Yan Nikhamin
Jae Park
Kevin Curran

Michel Sadelain
Marco Davila
Michael Gong
Jean Baptiste Latouche

Leukemia Service
David Scheinberg
Jae Park
Mark Frattini
Peter Maslak
Mark Heaney
Joe Jurcic
Nicole Lamanna
Marco Davila
Dan Douer

Cell Therapy and Cell Engineering Facility
(Isabelle Riviere, Director)
R&D, Manufacturing
Xiuyan Wang
(Dan Hollyman)
Jolanta Stefanski
Malgorzata Olszewska
Oriana Borquez-Ojeda
Clare Taylor
Teresa Wasielewska
Jinrong Qu

QA/QC
Shirley Bartido
(Mark Przybylowski)
James Hosey
Domenick Pirraglia
Vanessa Caprario

Clinical Research
Yvette Bernal

Lymphoma Service
Craig Moskowitz
Ariela Noy

GYN service
Samith Sandadi
Stephen Lee
Roisin O’ Clearbhall

Adult BMT Service
Sergio Geralt
Craig Sauter

Department of Clinical Laboratories
Lillian Reich
David Wuest
Kathy Smith

Biostatistics
Glenn Heller

Funding
CA59350 (MS); P30 CA-008748 (CT); 3RO1CA138738-02S1(RJB); Alliance for Cancer Gene Therapy; Terry Fox Run for Cancer Research; William H. Goodwin and Alice Goodwin, and the Commonwealth Cancer Foundation for Research and the ETC of MSKCC; Damon Runyon Clinical Investigator Award (RJB); William Lawrence & Blanche Hughes Foundation (RJB); CLL-Global Research Foundation (RJB)